
On Principal and Non-principal Solutions

Let p(x), q(x) be continuous functions defined on an interval I = [a, b),
b ≤ ∞, p(x) > 0, and consider the equation

(pu′)′ + qu = 0 . (1)

Assume (1) is non-oscillatory. A solution u will be called principal if∫ b dx

pu2
= ∞ , (2)

and non-principal otherwise. It is understood that the integral in (2) is to
be taken over a subinterval [c, b) not containing any zeros of u. There are
two main properties about such solutions we would like to derive:

(i) a principal solution u0 always exists and is unique up to constant multi-
ples;

(ii) if u1 is non-principal then there are cosntants α, β with α ̸= 0 such that

u1
u0

(x) = α

∫ x dy

pu20
+ β . (3)

In particular, | (u1/u0) (x)| → ∞ as x → b.

The (invertible) change of variable

t =

∫ x

a

dy

p(y)
(4)

transforms (1) into
v′′ + hv = 0 , (5)

where h(t) = p(x(t))q(x(t)). The new interval is [0, c), with c =
∫ b
a (1/p) dx.

Solutions of (5) are of the form v(t) = u(x(t)) for some solution of (1), and
therefore (5) is also non-oscillatory.

We will establish properties (i), (ii) for equation (5), and will show that
principal and non-principal solutions of equations (1) and (5) correspond to
each other.

It is known that if v1, v2 are linearly independent solutions of (5), then

F =
v2
v1
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is an injective mapping of the interval [0, c) into the extended real line with
Schwarzian derivative SF = 2h. The group of Möbius transformations T
of the real line acts on F by T (F ) = (AF + B)/(CF + D), AD − BC ̸=
0, leaving the Schwarzian invariant and changing v1, v2 to another set of
independent solutions Av2 +Bv1, Cv2 +Dv1. Any two mappings with the
same Schwarzian will differ by a Möbius trasnformation.

On the other hand, variation of parameters provides a linearly indepen-
dent solution from a given one v1 via the fromula

v2 = v1

∫ t ds

v21
.

Consequently, the function

F (t) =

∫ t ds

v21

has Schwarzian SF = 2h. Conversely, any function F with SF = 2h yields
the solution v = (F ′)−1/2 of (5).

Let v1 be any non-principal solution of (5). Since then F (c) < ∞, the
Möbius change

G(t) =
1

F (c)− F (t)
(6)

will now have G(c) = ∞. Therefore v0 = (G′)−1/2 is a principal solution.
This establishes (i) for equation (5).

Let v1 be any solution of (5), and let

w(τ) =
v1
v0

(H(τ)) ,

where t = H(τ) = G−1(τ). Note that dt/dτ = v20. Since G(c) = ∞, the
function w is defined on some interval [τ0,∞). Direct differentiation shows
that w′′ = 0, hence

w(τ) = ατ + β . (7)

If v1 is linearly independent from v0, then α ̸= 0, hence∫ c dt

v21
=

∫ ∞(
v0
v1

)2

dτ =

∫ ∞ dτ

(ατ + β)2
< ∞ .

Equation (7) also shows that for a non-principal solution v1, the quotient
v1/v0 → ∞ as t → c, growing at a linear rate with respect to the variable
τ = G(t). This proves (ii) for equation (5).
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The uniqueness part in (i) as well as equation (3) can be also de-
rived from properties of Möbius transformation. For the uniqueness, if
(G′

0)
−1/2 , (G′

1)
−1/2 are principal solutions, thenG1 = T (G0) for some Möbius

transformation that fixes the point at infinity. Hence T is linear, showing
that the principal solutions are a constant multiple of each other. For (3),
if (F ′)−1/2 is linearly independent from a principal solution (G′)−1/2, then
F = (AG+B)/(CG+D) for some C ̸= 0. Hence

(F ′)−1/2 = (AD −BC)−1/2(CG+D)(G′)−1/2 .

We return to equation (1). Let u(x) = v(x(t)) under the change of
variables (4). Then ∫ b dx

pu2
=

∫ c dt

v2
,

which shows that principal and non-principal solutions of (1) and (5) stand
in correspondence. Also, if u0 is a principal and u1 an arbitrary solution of
(1) then

u1
u0

(x) =
v1
v0

(t(x)) = αG(t(x)) + β = α

∫ t(x) ds

v20
+ β = α

∫ x dy

pu20
+ β .

We finish with two observations. First, as we showed, when v1 is a
non-principal solution for (5) then

v0 = (G′)−1/2 = (F ′)−1/2 (F (c)− F (t)) = v1

∫ c

t

ds

v21

is principal. In other words, if u1 is non-principal for (1) then

u1

∫ b

x

dy

pu21

will be principal. On the other hand, let v be any solution of (5) that does
not vanish on [t0, c), and let

F (t) =

∫ t

t0

ds

v2
.

Then

H = − 1

F
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is increasing and has H(c) < ∞. It follows that

v1 = (H ′)−1/2 = (F ′)−1/2F = v

∫ t

t0

ds

v2

is a non-principal solution of (5). Rephrasing, if u is any solution of (1)
which is non-vanishing on [x0, b) then

u

∫ x

x0

dy

pu2

will be non-principal.
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