Let $p(x), q(x)$ be continuous functions defined on an interval $I=[a, b)$, $b \leq \infty, p(x)>0$, and consider the equation

$$
\begin{equation*}
\left(p u^{\prime}\right)^{\prime}+q u=0 . \tag{1}
\end{equation*}
$$

Assume (1) is non-oscillatory. A solution u will be called principal if

$$
\begin{equation*}
\int^{b} \frac{d x}{p u^{2}}=\infty \tag{2}
\end{equation*}
$$

and non-principal otherwise. It is understood that the integral in (2) is to be taken over a subinterval $[c, b)$ not containing any zeros of u. There are two main properties about such solutions we would like to derive:
(i) a principal solution u_{0} always exists and is unique up to constant multiples;
(ii) if u_{1} is non-principal then there are cosntants α, β with $\alpha \neq 0$ such that

$$
\begin{equation*}
\frac{u_{1}}{u_{0}}(x)=\alpha \int^{x} \frac{d y}{p u_{0}^{2}}+\beta . \tag{3}
\end{equation*}
$$

In particular, $\left|\left(u_{1} / u_{0}\right)(x)\right| \rightarrow \infty$ as $x \rightarrow b$.
The (invertible) change of variable

$$
\begin{equation*}
t=\int_{a}^{x} \frac{d y}{p(y)} \tag{4}
\end{equation*}
$$

transforms (1) into

$$
\begin{equation*}
v^{\prime \prime}+h v=0, \tag{5}
\end{equation*}
$$

where $h(t)=p(x(t)) q(x(t))$. The new interval is $[0, c)$, with $c=\int_{a}^{b}(1 / p) d x$. Solutions of (5) are of the form $v(t)=u(x(t))$ for some solution of (1), and therefore (5) is also non-oscillatory.

We will establish properties (i), (ii) for equation (5), and will show that principal and non-principal solutions of equations (1) and (5) correspond to each other.

It is known that if v_{1}, v_{2} are linearly independent solutions of (5), then

$$
F=\frac{v_{2}}{v_{1}}
$$

is an injective mapping of the interval $[0, c)$ into the extended real line with Schwarzian derivative $S F=2 h$. The group of Möbius transformations T of the real line acts on F by $T(F)=(A F+B) /(C F+D), A D-B C \neq$ 0 , leaving the Schwarzian invariant and changing v_{1}, v_{2} to another set of independent solutions $A v_{2}+B v_{1}, C v_{2}+D v_{1}$. Any two mappings with the same Schwarzian will differ by a Möbius trasnformation.

On the other hand, variation of parameters provides a linearly independent solution from a given one v_{1} via the fromula

$$
v_{2}=v_{1} \int^{t} \frac{d s}{v_{1}^{2}}
$$

Consequently, the function

$$
F(t)=\int^{t} \frac{d s}{v_{1}^{2}}
$$

has Schwarzian $S F=2 h$. Conversely, any function F with $S F=2 h$ yields the solution $v=\left(F^{\prime}\right)^{-1 / 2}$ of (5).

Let v_{1} be any non-principal solution of (5). Since then $F(c)<\infty$, the Möbius change

$$
\begin{equation*}
G(t)=\frac{1}{F(c)-F(t)} \tag{6}
\end{equation*}
$$

will now have $G(c)=\infty$. Therefore $v_{0}=\left(G^{\prime}\right)^{-1 / 2}$ is a principal solution. This establishes (i) for equation (5).

Let v_{1} be any solution of (5), and let

$$
w(\tau)=\frac{v_{1}}{v_{0}}(H(\tau))
$$

where $t=H(\tau)=G^{-1}(\tau)$. Note that $d t / d \tau=v_{0}^{2}$. Since $G(c)=\infty$, the function w is defined on some interval $\left[\tau_{0}, \infty\right)$. Direct differentiation shows that $w^{\prime \prime}=0$, hence

$$
\begin{equation*}
w(\tau)=\alpha \tau+\beta \tag{7}
\end{equation*}
$$

If v_{1} is linearly independent from v_{0}, then $\alpha \neq 0$, hence

$$
\int^{c} \frac{d t}{v_{1}^{2}}=\int^{\infty}\left(\frac{v_{0}}{v_{1}}\right)^{2} d \tau=\int^{\infty} \frac{d \tau}{(\alpha \tau+\beta)^{2}}<\infty
$$

Equation (7) also shows that for a non-principal solution v_{1}, the quotient $v_{1} / v_{0} \rightarrow \infty$ as $t \rightarrow c$, growing at a linear rate with respect to the variable $\tau=G(t)$. This proves (ii) for equation (5).

The uniqueness part in (i) as well as equation (3) can be also derived from properties of Möbius transformation. For the uniqueness, if $\left(G_{0}^{\prime}\right)^{-1 / 2},\left(G_{1}^{\prime}\right)^{-1 / 2}$ are principal solutions, then $G_{1}=T\left(G_{0}\right)$ for some Möbius transformation that fixes the point at infinity. Hence T is linear, showing that the principal solutions are a constant multiple of each other. For (3), if $\left(F^{\prime}\right)^{-1 / 2}$ is linearly independent from a principal solution $\left(G^{\prime}\right)^{-1 / 2}$, then $F=(A G+B) /(C G+D)$ for some $C \neq 0$. Hence

$$
\left(F^{\prime}\right)^{-1 / 2}=(A D-B C)^{-1 / 2}(C G+D)\left(G^{\prime}\right)^{-1 / 2}
$$

We return to equation (1). Let $u(x)=v(x(t))$ under the change of variables (4). Then

$$
\int^{b} \frac{d x}{p u^{2}}=\int^{c} \frac{d t}{v^{2}}
$$

which shows that principal and non-principal solutions of (1) and (5) stand in correspondence. Also, if u_{0} is a principal and u_{1} an arbitrary solution of (1) then

$$
\frac{u_{1}}{u_{0}}(x)=\frac{v_{1}}{v_{0}}(t(x))=\alpha G(t(x))+\beta=\alpha \int^{t(x)} \frac{d s}{v_{0}^{2}}+\beta=\alpha \int^{x} \frac{d y}{p u_{0}^{2}}+\beta
$$

We finish with two observations. First, as we showed, when v_{1} is a non-principal solution for (5) then

$$
v_{0}=\left(G^{\prime}\right)^{-1 / 2}=\left(F^{\prime}\right)^{-1 / 2}(F(c)-F(t))=v_{1} \int_{t}^{c} \frac{d s}{v_{1}^{2}}
$$

is principal. In other words, if u_{1} is non-principal for (1) then

$$
u_{1} \int_{x}^{b} \frac{d y}{p u_{1}^{2}}
$$

will be principal. On the other hand, let v be any solution of (5) that does not vanish on $\left[t_{0}, c\right)$, and let

$$
F(t)=\int_{t_{0}}^{t} \frac{d s}{v^{2}}
$$

Then

$$
H=-\frac{1}{F}
$$

is increasing and has $H(c)<\infty$. It follows that

$$
v_{1}=\left(H^{\prime}\right)^{-1 / 2}=\left(F^{\prime}\right)^{-1 / 2} F=v \int_{t_{0}}^{t} \frac{d s}{v^{2}}
$$

is a non-principal solution of (5). Rephrasing, if u is any solution of (1) which is non-vanishing on $\left[x_{0}, b\right)$ then

$$
u \int_{x_{0}}^{x} \frac{d y}{p u^{2}}
$$

will be non-principal.

